Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Dent Res ; 102(11): 1252-1260, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37555395

RESUMO

The capacity of a tissue to continuously alter its phenotype lies at the heart of how an animal is able to quickly adapt to changes in environmental stimuli. Within tissues, differentiated cells are rigid and play a limited role in adapting to new environments; however, differentiated cells are replenished by stem cells that are defined by their phenotypic plasticity. Here we demonstrate that a Wnt-responsive stem cell niche in the junctional epithelium is responsible for the capability of this tissue to quickly adapt to changes in the physical consistency of a diet. Mechanical input from chewing is required to both establish and maintain this niche. Since the junctional epithelium directly attaches to the tooth surface via hemidesmosomes, a soft diet requires minimal mastication, and consequently, lower distortional strains are produced in the tissue. This reduced strain state is accompanied by reduced mitotic activity in both stem cells and their progeny, leading to tissue atrophy. The atrophied junctional epithelium exhibits suboptimal barrier functions, allowing the ingression of bacteria into the underlying connective tissues, which in turn trigger inflammation and mild alveolar bone loss. These data link the mechanics of chewing to the biology of tooth-supporting tissues, revealing how a stem cell niche is responsible for the remarkable adaptability of the junctional epithelium to different diets.


Assuntos
Inserção Epitelial , Gengiva , Animais , Mastigação , Tecido Conjuntivo , Biologia , Epitélio
2.
J Dent Res ; 100(13): 1501-1509, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34009051

RESUMO

The WNT/ß-catenin signaling pathway plays a central role in the biology of the periodontium, yet the function of specific extracellular WNT ligands remains poorly understood. By using a Wnt1-inducible transgenic mouse model targeting Col1a1-expressing alveolar osteoblasts, odontoblasts, and cementoblasts, we demonstrate that the WNT ligand WNT1 is a strong promoter of cementum and alveolar bone formation in vivo. We induced Wnt1 expression for 1, 3, or 9 wk in Wnt1Tg mice and analyzed them at the age of 6 wk and 12 wk. Micro-computed tomography (CT) analyses of the mandibles revealed a 1.8-fold increased bone volume after 1 and 3 wk of Wnt1 expression and a 3-fold increased bone volume after 9 wk of Wnt1 expression compared to controls. In addition, the alveolar ridges were higher in Wnt1Tg mice as compared to controls. Nondecalcified histology demonstrated increased acellular cementum thickness and cellular cementum volume after 3 and 9 wk of Wnt1 expression. However, 9 wk of Wnt1 expression was also associated with periodontal breakdown and ectopic mineralization of the pulp. The composition of this ectopic matrix was comparable to those of cellular cementum as demonstrated by quantitative backscattered electron imaging and immunohistochemistry for noncollagenous proteins. Our analyses of 52-wk-old mice after 9 wk of Wnt1 expression revealed that Wnt1 expression affects mandibular bone and growing incisors but not molar teeth, indicating that Wnt1 influences only growing tissues. To further investigate the effect of Wnt1 on cementoblasts, we stably transfected the cementoblast cell line (OCCM-30) with a vector expressing Wnt1-HA and performed proliferation as well as differentiation experiments. These experiments demonstrated that Wnt1 promotes proliferation but not differentiation of cementoblasts. Taken together, our findings identify, for the first time, Wnt1 as a critical regulator of alveolar bone and cementum formation, as well as provide important insights for harnessing the WNT signal pathway in regenerative dentistry.


Assuntos
Cementogênese , Cemento Dentário , Animais , Camundongos , Osteogênese , Ligamento Periodontal , Microtomografia por Raio-X
3.
Osteoarthritis Cartilage ; 28(11): 1437-1447, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32795512

RESUMO

OBJECTIVE: Alterations in the subchondral bone (SCB) are likely to play a decisive role in the development of osteoarthritis (OA). Since aging represents a major risk factor for OA, the aim of the current study was to assess the microstructural changes of the subchondral bone in the femoral head during aging. DESIGN: Femoral heads and matched iliac crest biopsies of 80 individuals (age 21-99 years) were collected post-mortem. The bone microstructure of the subchondral trabecular bone as well as the cartilage thickness (Cg.Th) and subchondral bone plate thickness (SCB.Th) were quantified using histomorphometry. The different subregions of the SCB were also imaged by quantitative backscattered electron imaging (qBEI) in 31 aged cases to assess the bone mineral density distribution (BMDD). RESULTS: The detected linear decline of bone volume per tissue volume (BV/TV) in the femoral head with aging (Slope, 95% CI: -0.208 to -0.109 %/yr.) was primarily due to a decrease in trabecular thickness (Tb.Th, Slope, 95% CI: -0.774 to -0.343 µm/yr). While SCB.Th declined with aging (Slope, 95% CI: -1.941 to -0.034 µm/yr), no changes in Cg.Th were detected (Slope, 95% CI: -0.001 to 0.005 mm/yr). The matrix mineralization of the subchondral bone was lower compared to the trabecular bone and also decreased with aging. CONCLUSIONS: Regular changes of the SCB during aging primarily involve a reduction of Tb.Th, SCB.Th and matrix mineralization. Our findings facilitate future interpretations of early and late OA specimens to decipher the role of the SCB in OA pathogenesis.


Assuntos
Envelhecimento/patologia , Densidade Óssea , Osso Esponjoso/patologia , Cartilagem Articular/patologia , Cabeça do Fêmur/patologia , Ílio/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Tamanho do Órgão , Adulto Jovem
4.
J Dent Res ; 95(7): 752-60, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26927527

RESUMO

The ribosomal S6 kinase RSK2 is essential for osteoblast function, and inactivating mutations of RSK2 cause osteopenia in humans with Coffin-Lowry syndrome (CLS). Alveolar bone loss and premature tooth exfoliation are also consistently reported symptoms in CLS patients; however, the pathophysiologic mechanisms are unclear. Therefore, aiming to identify the functional relevance of Rsk2 for tooth development, we analyzed Rsk2-deficient mice. Here, we show that Rsk2 is a critical regulator of cementoblast function. Immunohistochemistry, histology, micro-computed tomography imaging, quantitative backscattered electron imaging, and in vitro assays revealed that Rsk2 is activated in cementoblasts and is necessary for proper acellular cementum formation. Cementum hypoplasia that is observed in Rsk2-deficient mice causes detachment and disorganization of the periodontal ligament and was associated with significant alveolar bone loss with age. Moreover, Rsk2-deficient mice display hypomineralization of cellular cementum with accumulation of nonmineralized cementoid. In agreement, treatment of the cementoblast cell line OCCM-30 with a Rsk inhibitor reduces formation of mineralization nodules and decreases the expression of cementum markers. Western blot analyses based on antibodies against Rsk1, Rsk2, and an activated form of the 2 kinases confirmed that Rsk2 is expressed and activated in differentiating OCCM-30 cells. To discriminate between periodontal bone loss and systemic bone loss, we additionally crossed Rsk2-deficient mice with transgenic mice overexpressing the osteoanabolic transcription factor Fra1. Fra1 overexpression clearly increases systemic bone volume in Rsk2-deficient mice but does not protect from alveolar bone loss. Our results indicate that cell autonomous cementum defects are causing early tooth loss in CLS patients. Moreover, we identify Rsk2 as a nonredundant regulator of cementum homeostasis, alveolar bone maintenance, and periodontal health, with all these features being independent of Rsk2 function in systemic bone formation.


Assuntos
Síndrome de Coffin-Lowry/genética , Cemento Dentário/fisiologia , Proteínas Quinases S6 Ribossômicas 90-kDa/fisiologia , Animais , Western Blotting , Calcificação Fisiológica/fisiologia , Síndrome de Coffin-Lowry/enzimologia , Cemento Dentário/anatomia & histologia , Cemento Dentário/citologia , Cemento Dentário/metabolismo , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Microscopia Eletrônica de Transmissão por Filtração de Energia , Proteínas Quinases S6 Ribossômicas 90-kDa/deficiência , Microtomografia por Raio-X
5.
Osteoporos Int ; 25(7): 1891-903, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24777741

RESUMO

UNLABELLED: Chronic environmental fluoride exposure under calcium stress causes fragility fractures due to osteoporosis and bone quality deterioration, at least in sheep. Proof of skeletal fluorosis, presenting without increased bone density, calls for a review of fracture incidence in areas with fluoridated groundwater, including an analysis of patients with low bone mass. INTRODUCTION: Understanding the skeletal effects of environmental fluoride exposure especially under calcium stress remains an unmet need of critical importance. Therefore, we studied the skeletal phenotype of sheep chronically exposed to highly fluoridated water in the Kalahari Desert, where livestock is known to present with fragility fractures. METHODS: Dorper ewes from two flocks in Namibia were studied. Chemical analyses of water, blood and urine were executed for both cohorts. Skeletal phenotyping comprised micro-computer tomography (µCT), histological, histomorphometric, biomechanical, quantitative backscattered electron imaging (qBEI) and energy-dispersive X-ray (EDX) analysis. Analysis was performed in direct comparison with undecalcified human iliac crest bone biopsies of patients with fluoride-induced osteopathy. RESULTS: The fluoride content of water, blood and urine was significantly elevated in the Kalahari group compared to the control. Surprisingly, a significant decrease in both cortical and trabecular bones was found in sheep chronically exposed to fluoride. Furthermore, osteoid parameters and the degree and heterogeneity of mineralization were increased. The latter findings are reminiscent of those found in osteoporotic patients with treatment-induced fluorosis. Mechanical testing revealed a significant decrease in the bending strength, concurrent with the clinical observation of fragility fractures in sheep within an area of environmental fluoride exposure. CONCLUSIONS: Our data suggest that fluoride exposure with concomitant calcium deficit (i) may aggravate bone loss via reductions in mineralized trabecular and cortical bone mass and (ii) can cause fragility fractures and (iii) that the prevalence of skeletal fluorosis especially due to groundwater exposure should be reviewed in many areas of the world as low bone mass alone does not exclude fluorosis.


Assuntos
Cálcio da Dieta/administração & dosagem , Água Potável/efeitos adversos , Intoxicação por Flúor/complicações , Osteoporose/veterinária , Fraturas por Osteoporose/veterinária , Doenças dos Ovinos/induzido quimicamente , Animais , Densidade Óssea/efeitos dos fármacos , Cálcio da Dieta/análise , Água Potável/química , Feminino , Fêmur/ultraestrutura , Fluoretos/análise , Humanos , Ílio/patologia , Microscopia Eletrônica , Osteoporose/induzido quimicamente , Osteoporose/fisiopatologia , Fraturas por Osteoporose/induzido quimicamente , Fraturas por Osteoporose/fisiopatologia , Ovinos , Doenças dos Ovinos/fisiopatologia , Carneiro Doméstico
6.
Osteoporos Int ; 24(8): 2325-34, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23436077

RESUMO

UNLABELLED: Indolent systemic mastocytosis (ISM) can trigger bone loss. However, the clinical relevance of different mast cell infiltration patterns for bone remains to be clarified. Here, we report increased bone turnover in individuals with ISM, and its extent is rather related to the type of mast cell distribution within the bone marrow than to the presence or absence of cutaneous manifestations. INTRODUCTION: It is well established that ISM can trigger osteopenia or osteoporosis. However, neither the clinical relevance of the infiltration pattern of mast cells within the bone marrow nor the impact of the presence or absence of cutaneous mast cell infiltration has been elucidated. METHODS: We retrospectively analysed 300 cases with histologically proven ISM of the bone marrow and performed quantitative histomorphometry for a subgroup of 159 patients that did not receive any treatment before the biopsies were taken. Most importantly, since 66 % of the patients displayed ISM without the characteristic skin lesions, we were able to compare ISM with or without cutaneous manifestation. RESULTS: We found that both forms of ISM were not only characterized by a decreased trabecular bone mass but also by an increased number of osteoclasts and osteoblasts. Interestingly, when we analysed these data in relation to mast cell distribution, we found that the bone cell numbers in cases with mast cell granulomas were significantly increased compared to cases with diffuse mast cell distribution. Moreover, evidence of increased bone turnover was also found in 16 patients displaying osteosclerosis. CONCLUSION: Based on the largest cohort of bone biopsies from patients with ISM analysed so far, we could demonstrate high bone turnover, more specifically increased osteoblast and osteoclast numbers and surface indices, as a cause of the skeletal changes. Moreover, the severity of the bone disease is presumably rather dependent on the amount of mast cells and their distribution within the bone marrow irrespective of the presence or absence of cutaneous involvement.


Assuntos
Mastocitose Sistêmica/patologia , Osteoblastos/patologia , Osteoclastos/patologia , Adulto , Distribuição por Idade , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/sangue , Biópsia , Células da Medula Óssea/patologia , Remodelação Óssea/fisiologia , Contagem de Células , Feminino , Alemanha/epidemiologia , Humanos , Masculino , Mastócitos/patologia , Mastocitose Sistêmica/epidemiologia , Mastocitose Sistêmica/fisiopatologia , Pessoa de Meia-Idade , Prevalência , Estudos Retrospectivos , Distribuição por Sexo
7.
Osteoporos Int ; 24(2): 641-9, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22581296

RESUMO

SUMMARY: Although it is well established that a decrease in bone mass increases the risk of osteoporotic fractures, the proportion of fractures attributable to areal bone mineral density (BMD) is rather low. Here, we have identified bone mineralization defects together with low serum 25-hydroxyvitamin D (25-(OH) D) levels as additional factors associated with femoral neck fractures. INTRODUCTION: Osteoporotic fractures of the femoral neck are associated with increased morbidity and mortality. Although it is well established that a decrease in bone mass increases the risk of osteoporotic fractures, the proportion of fractures attributable to areal BMD is rather low. To identify possible additional factors influencing femur neck fragility, we analyzed patients with femoral neck fracture. METHODS: We performed a detailed clinical and histomorphometrical evaluation on 103 patients with femoral neck fracture including dual-energy X-ray absorptiometry, laboratory parameters, and histomorphometric and bone mineral density distribution (BMDD) analyses of undecalcified processed biopsies of the femoral head and set them in direct comparison to skeletal healthy control individuals. RESULTS: Patients with femoral neck fracture displayed significantly lower serum 25-(OH) D levels and increased serum parathyroid hormone (PTH) compared to controls. Histomorphometric analysis revealed not only a decreased bone volume and trabecular thickness in the biopsies of the patients, but also a significant increase of osteoid indices. BMDD analysis showed increased heterogeneity of mineralization in patients with femoral neck fracture. Moreover, patients with femoral neck fracture and serum 25-(OH) D levels below 12 µg/l displayed significantly thinner trabecular bone. CONCLUSION: Taken together, our data suggest that impaired bone mineralization accompanied by low serum 25-(OH) D levels is of major importance in the etiology of femoral neck fractures. Therefore, balancing serum 25-(OH) D levels and thereby normalizing PTH serum levels may counteract pronounced mineralization defects and might decrease the incidence of femoral neck fractures.


Assuntos
Fraturas do Colo Femoral/etiologia , Hiperparatireoidismo Secundário/complicações , Fraturas por Osteoporose/etiologia , Deficiência de Vitamina D/complicações , Vitamina D/análogos & derivados , Absorciometria de Fóton , Idoso , Idoso de 80 Anos ou mais , Fosfatase Alcalina/sangue , Densidade Óssea/fisiologia , Calcificação Fisiológica/fisiologia , Estudos de Casos e Controles , Feminino , Fraturas do Colo Femoral/sangue , Fraturas do Colo Femoral/epidemiologia , Fraturas do Colo Femoral/fisiopatologia , Humanos , Hiperparatireoidismo Secundário/sangue , Hiperparatireoidismo Secundário/epidemiologia , Masculino , Fraturas por Osteoporose/sangue , Fraturas por Osteoporose/epidemiologia , Fraturas por Osteoporose/fisiopatologia , Hormônio Paratireóideo/sangue , Vitamina D/sangue , Deficiência de Vitamina D/sangue , Deficiência de Vitamina D/epidemiologia
8.
Osteoporos Int ; 22(10): 2667-75, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21267545

RESUMO

UNLABELLED: Histomorphometry and quantitative backscattered electron microscopy of iliac crest biopsies from patients with adult hypophosphatasia not only confirmed the expected enrichment of non-mineralized osteoid, but also demonstrated an altered trabecular microarchitecture, an increased number of osteoblasts, and an impaired calcium distribution within the mineralized bone matrix. INTRODUCTION: Adult hypophosphatasia is an inherited disorder of bone metabolism caused by inactivating mutations of the ALPL gene, encoding tissue non-specific alkaline phosphatase. While it is commonly accepted that the increased fracture risk of the patients is the consequence of osteomalacia, there are only few studies describing a complete histomorphometric analysis of bone biopsies from affected individuals. Therefore, we analyzed iliac crest biopsies from eight patients and set them in direct comparison to biopsies from healthy donors or from individuals with other types of osteomalacia. METHODS: Histomorphometric analysis was performed on non-decalcified sections stained either after von Kossa/van Gieson or with toluidine blue. Bone mineral density distribution was quantified by backscattered electron microscopy. RESULTS: Besides the well-documented enrichment of non-mineralized bone matrix in individuals suffering from adult hypophosphatasia, our histomorphometric analysis revealed alterations of the trabecular microarchitecture and an increased number of osteoblasts compared to healthy controls or to individuals with other types of osteomalacia. Moreover, the analysis of the mineralized bone matrix revealed significantly decreased calcium content in patients with adult hypophosphatasia. CONCLUSIONS: Taken together, our data show that adult hypophosphatasia does not solely result in an enrichment of osteoid, but also in a considerable degradation of bone quality, which might contribute to the increased fracture risk of the affected individuals.


Assuntos
Matriz Óssea/patologia , Calcificação Fisiológica , Hipofosfatasia/patologia , Ílio/patologia , Osteomalacia/patologia , Adulto , Idoso , Densidade Óssea , Estudos de Casos e Controles , Humanos , Masculino , Microscopia Eletrônica , Pessoa de Meia-Idade , Osteoblastos/metabolismo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...